Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Global Saliency: Aggregating Saliency Maps to Assess Dataset Artefact Bias (1910.07604v2)

Published 16 Oct 2019 in cs.CV and cs.LG

Abstract: In high-stakes applications of machine learning models, interpretability methods provide guarantees that models are right for the right reasons. In medical imaging, saliency maps have become the standard tool for determining whether a neural model has learned relevant robust features, rather than artefactual noise. However, saliency maps are limited to local model explanation because they interpret predictions on an image-by-image basis. We propose aggregating saliency globally, using semantic segmentation masks, to provide quantitative measures of model bias across a dataset. To evaluate global saliency methods, we propose two metrics for quantifying the validity of saliency explanations. We apply the global saliency method to skin lesion diagnosis to determine the effect of artefacts, such as ink, on model bias.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.