Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Resolving Propensity Contradiction in Offline Recommender Learning (1910.07295v6)

Published 16 Oct 2019 in stat.ML, cs.IR, and cs.LG

Abstract: We study offline recommender learning from explicit rating feedback in the presence of selection bias. A current promising solution for the bias is the inverse propensity score (IPS) estimation. However, the performance of existing propensity-based methods can suffer significantly from the propensity estimation bias. In fact, most of the previous IPS-based methods require some amount of missing-completely-at-random (MCAR) data to accurately estimate the propensity. This leads to a critical self-contradiction; IPS is ineffective without MCAR data, even though it originally aims to learn recommenders from only missing-not-at-random feedback. To resolve this propensity contradiction, we derive a propensity-independent generalization error bound and propose a novel algorithm to minimize the theoretical bound via adversarial learning. Our theory and algorithm do not require a propensity estimation procedure, thereby leading to a well-performing rating predictor without the true propensity information. Extensive experiments demonstrate that the proposed approach is superior to a range of existing methods both in rating prediction and ranking metrics in practical settings without MCAR data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.