Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Long Optimal or Small-Defect LRC Codes with Unbounded Minimum Distances (1910.07267v2)

Published 16 Oct 2019 in cs.IT and math.IT

Abstract: A code over a finite field is called locally recoverable code (LRC) if every coordinate symbol can be determined by a small number (at most r, this parameter is called locality) of other coordinate symbols. For a linear code with length n, dimension k and locality r, its minimum distance d satisfies a Singleton-like bound. A code attaining this bound is called optimal. Many families of optimal locally recoverable codes have been constructed by using different techniques in finite fields or algebraic curves. However no optimal LRC code over a general finite field of q elements with the length n around the square of q, the locality r larger than or equal to 24 and the minimum distance d larger than or equal to 9 has been constructed. In this paper for any given finite field of q elements, any given r between 1 and q-1 and given d in certain range, we give an optimal LRC code with length n around the square of q, locality r and minimum distance d. This is the only known family of optimal LRC codes with lengths n around the square of q and unbounded localities and minimum distances d larger than or equal to 9. We also gives an asymptotic bound for q-ary r locality LRC codes better than the previously konwn bound. Many long r-locality LRC codes with small defects are also constructed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.