Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Exploration via Negatively Correlated Search (1910.07151v2)

Published 16 Oct 2019 in cs.NE, cs.AI, and cs.LG

Abstract: Effective exploration is a key to successful search. The recently proposed Negatively Correlated Search (NCS) tries to achieve this by parallel exploration, where a set of search processes are driven to be negatively correlated so that different promising areas of the search space can be visited simultaneously. Various applications have verified the advantages of such novel search behaviors. Nevertheless, the mathematical understandings are still lacking as the previous NCS was mostly devised by intuition. In this paper, a more principled NCS is presented, explaining that the parallel exploration is equivalent to the explicit maximization of both the population diversity and the population solution qualities, and can be optimally obtained by partially gradient descending both models with respect to each search process. For empirical assessments, the reinforcement learning tasks that largely demand exploration ability is considered. The new NCS is applied to the popular reinforcement learning problems, i.e., playing Atari games, to directly train a deep convolution network with 1.7 million connection weights in the environments with uncertain and delayed rewards. Empirical results show that the significant advantages of NCS over the compared state-of-the-art methods can be highly owed to the effective parallel exploration ability.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube