Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep learning of parameterized equations with applications to uncertainty quantification (1910.07096v3)

Published 15 Oct 2019 in math.NA, cs.NA, math.DS, and physics.comp-ph

Abstract: We propose a numerical method for discovering unknown parameterized dynamical systems by using observational data of the state variables. Our method is built upon and extends the recent work of discovering unknown dynamical systems, in particular those using deep neural network (DNN). We propose a DNN structure, largely based upon the residual network (ResNet), to not only learn the unknown form of the governing equation but also take into account the random effect embedded in the system, which is generated by the random parameters. Once the DNN model is successfully constructed, it is able to produce system prediction over longer term and for arbitrary parameter values. For uncertainty quantification, it allows us to conduct uncertainty analysis by evaluating solution statistics over the parameter space.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.