Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ODE guided Neural Data Augmentation Techniques for Time Series Data and its Benefits on Robustness (1910.06813v3)

Published 15 Oct 2019 in cs.LG and stat.ML

Abstract: Exploring adversarial attack vectors and studying their effects on machine learning algorithms has been of interest to researchers. Deep neural networks working with time series data have received lesser interest compared to their image counterparts in this context. In a recent finding, it has been revealed that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks. In this paper, we introduce two local gradient based and one spectral density based time series data augmentation techniques. We show that a model trained with data obtained using our techniques obtains state-of-the-art classification accuracy on various time series benchmarks. In addition, it improves the robustness of the model against some of the most common corruption techniques,such as Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.