Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ODE guided Neural Data Augmentation Techniques for Time Series Data and its Benefits on Robustness (1910.06813v3)

Published 15 Oct 2019 in cs.LG and stat.ML

Abstract: Exploring adversarial attack vectors and studying their effects on machine learning algorithms has been of interest to researchers. Deep neural networks working with time series data have received lesser interest compared to their image counterparts in this context. In a recent finding, it has been revealed that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks. In this paper, we introduce two local gradient based and one spectral density based time series data augmentation techniques. We show that a model trained with data obtained using our techniques obtains state-of-the-art classification accuracy on various time series benchmarks. In addition, it improves the robustness of the model against some of the most common corruption techniques,such as Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.