Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Word Embedding Factorization for Compression Using Distilled Nonlinear Neural Decomposition (1910.06720v2)

Published 2 Oct 2019 in cs.CL and cs.LG

Abstract: Word-embeddings are vital components of NLP models and have been extensively explored. However, they consume a lot of memory which poses a challenge for edge deployment. Embedding matrices, typically, contain most of the parameters for LLMs and about a third for machine translation systems. In this paper, we propose Distilled Embedding, an (input/output) embedding compression method based on low-rank matrix decomposition and knowledge distillation. First, we initialize the weights of our decomposed matrices by learning to reconstruct the full pre-trained word-embedding and then fine-tune end-to-end, employing knowledge distillation on the factorized embedding. We conduct extensive experiments with various compression rates on machine translation and LLMing, using different data-sets with a shared word-embedding matrix for both embedding and vocabulary projection matrices. We show that the proposed technique is simple to replicate, with one fixed parameter controlling compression size, has higher BLEU score on translation and lower perplexity on LLMing compared to complex, difficult to tune state-of-the-art methods.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.