Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Demand Adaptive Multi-Objective Electric Taxi Fleet Dispatching with Carbon Emission Analysis (1910.06536v1)

Published 15 Oct 2019 in math.OC, cs.SY, and eess.SY

Abstract: As a foreseeable future mode of transport with lower emissions and higher efficiencies, electric vehicles have received worldwide attention. For convenient centralized management, taxis are considered as the fleet with electrification priority. In this work, we focus on the study on electric taxis dispatching, with consideration of picking up customers and recharging, based on real world traffic data of a large number of taxis in Beijing. First, the assumed electric taxi charging stations are located using the K mean method. Second, based on the station locations and the order demands, which are in form of origin-destination pairs and extracted from the trajectory data, a dispatching strategy as well as the simulation framework is developed with consideration of reducing customer waiting time, mitigating electric taxi charging congestion, and balancing order number distribution among electric taxis. The proposed method models the electric taxi charging behaviors temporally discretely from the aspects of charging demands and availability of chargers, and further incorporates a centralized and intelligent fleet dispatching platform, which is capable of handling taxi service requests and arranging electric taxis' recharging in real time. The methodology in this paper is readily applicable to dispatching of different types of electric vehicle fleet with similar dataset available. Among the method, we use queueing theory to model the electric vehicle charging station waiting phenomena and include this factor into dispatching platform. Carbon emission is also surveyed and analyzed.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube