Papers
Topics
Authors
Recent
2000 character limit reached

Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG (1910.06517v1)

Published 15 Oct 2019 in cs.DS, cs.LG, and math.OC

Abstract: Given a data matrix $\mathbf{A} \in \mathbb{R}{n \times d}$, principal component projection (PCP) and principal component regression (PCR), i.e. projection and regression restricted to the top-eigenspace of $\mathbf{A}$, are fundamental problems in machine learning, optimization, and numerical analysis. In this paper we provide the first algorithms that solve these problems in nearly linear time for fixed eigenvalue distribution and large n. This improves upon previous methods which have superlinear running times when both the number of top eigenvalues and inverse gap between eigenspaces is large. We achieve our results by applying rational approximations to reduce PCP and PCR to solving asymmetric linear systems which we solve by a variant of SVRG. We corroborate these findings with preliminary empirical experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.