Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG (1910.06517v1)

Published 15 Oct 2019 in cs.DS, cs.LG, and math.OC

Abstract: Given a data matrix $\mathbf{A} \in \mathbb{R}{n \times d}$, principal component projection (PCP) and principal component regression (PCR), i.e. projection and regression restricted to the top-eigenspace of $\mathbf{A}$, are fundamental problems in machine learning, optimization, and numerical analysis. In this paper we provide the first algorithms that solve these problems in nearly linear time for fixed eigenvalue distribution and large n. This improves upon previous methods which have superlinear running times when both the number of top eigenvalues and inverse gap between eigenspaces is large. We achieve our results by applying rational approximations to reduce PCP and PCR to solving asymmetric linear systems which we solve by a variant of SVRG. We corroborate these findings with preliminary empirical experiments.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)