Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DeepVS: An Efficient and Generic Approach for Source Code Modeling Usage (1910.06500v2)

Published 15 Oct 2019 in cs.NE, cs.PL, and cs.SE

Abstract: The source code suggestions provided by current IDEs are mostly dependent on static type learning. These suggestions often end up proposing irrelevant suggestions for a peculiar context. Recently, deep learning-based approaches have shown great potential in the modeling of source code for various software engineering tasks. However, these techniques lack adequate generalization and resistance to acclimate the use of such models in a real-world software development environment. This letter presents \textit{DeepVS}, an end-to-end deep neural code completion tool that learns from existing codebases by exploiting the bidirectional Gated Recurrent Unit (BiGRU) neural net. The proposed tool is capable of providing source code suggestions instantly in an IDE by using pre-trained BiGRU neural net. The evaluation of this work is two-fold, quantitative and qualitative. Through extensive evaluation on ten real-world open-source software systems, the proposed method shows significant performance enhancement and its practicality. Moreover, the results also suggest that \textit{DeepVS} tool is capable of suggesting zero-day (unseen) code tokens by learning coding patterns from real-world software systems.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.