Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Limitations of Variational Mutual Information Estimators (1910.06222v2)

Published 14 Oct 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Variational approaches based on neural networks are showing promise for estimating mutual information (MI) between high dimensional variables. However, they can be difficult to use in practice due to poorly understood bias/variance tradeoffs. We theoretically show that, under some conditions, estimators such as MINE exhibit variance that could grow exponentially with the true amount of underlying MI. We also empirically demonstrate that existing estimators fail to satisfy basic self-consistency properties of MI, such as data processing and additivity under independence. Based on a unified perspective of variational approaches, we develop a new estimator that focuses on variance reduction. Empirical results on standard benchmark tasks demonstrate that our proposed estimator exhibits improved bias-variance trade-offs on standard benchmark tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jiaming Song (78 papers)
  2. Stefano Ermon (279 papers)
Citations (186)

Summary

We haven't generated a summary for this paper yet.