Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SLEEPER: interpretable Sleep staging via Prototypes from Expert Rules (1910.06100v1)

Published 14 Oct 2019 in cs.LG, eess.SP, and stat.ML

Abstract: Sleep staging is a crucial task for diagnosing sleep disorders. It is tedious and complex as it can take a trained expert several hours to annotate just one patient's polysomnogram (PSG) from a single night. Although deep learning models have demonstrated state-of-the-art performance in automating sleep staging, interpretability which defines other desiderata, has largely remained unexplored. In this study, we propose Sleep staging via Prototypes from Expert Rules (SLEEPER), which combines deep learning models with expert defined rules using a prototype learning framework to generate simple interpretable models. In particular, SLEEPER utilizes sleep scoring rules and expert defined features to derive prototypes which are embeddings of PSG data fragments via convolutional neural networks. The final models are simple interpretable models like a shallow decision tree defined over those phenotypes. We evaluated SLEEPER using two PSG datasets collected from sleep studies and demonstrated that SLEEPER could provide accurate sleep stage classification comparable to human experts and deep neural networks with about 85% ROC-AUC and .7 kappa.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.