Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Semantic Parsing of Freehand Sketches with Homogeneous Transformation, Soft-Weighted Loss, and Staged Learning (1910.06023v2)

Published 14 Oct 2019 in cs.CV

Abstract: In this paper, we propose a novel deep framework for part-level semantic parsing of freehand sketches, which makes three main contributions that are experimentally shown to have substantial practical merit. First, we propose a homogeneous transformation method to address the problem of domain adaptation. For the task of sketch parsing, there is no available data of labeled freehand sketches that can be directly used for model training. An alternative solution is to learn from datasets of real image parsing, while the domain adaptation is an inevitable problem. Unlike existing methods that utilize the edge maps of real images to approximate freehand sketches, the proposed homogeneous transformation method transforms the data from domains of real images and freehand sketches into a homogeneous space to minimize the semantic gap. Second, we design a soft-weighted loss function as guidance for the training process, which gives attention to both the ambiguous label boundary and class imbalance. Third, we present a staged learning strategy to improve the parsing performance of the trained model, which takes advantage of the shared information and specific characteristic from different sketch categories. Extensive experimental results demonstrate the effectiveness of the above three methods. Specifically, to evaluate the generalization ability of our homogeneous transformation method, additional experiments for the task of sketch-based image retrieval are conducted on the QMUL FG-SBIR dataset. Finally, by integrating the proposed three methods into a unified framework of deep semantic sketch parsing (DeepSSP), we achieve the state-of-the-art on the public SketchParse dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ying Zheng (12 papers)
  2. Hongxun Yao (30 papers)
  3. Xiaoshuai Sun (91 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.