Emergent Mind

Emergent properties of the local geometry of neural loss landscapes

(1910.05929)
Published Oct 14, 2019 in cs.LG , cs.NE , and stat.ML

Abstract

The local geometry of high dimensional neural network loss landscapes can both challenge our cherished theoretical intuitions as well as dramatically impact the practical success of neural network training. Indeed recent works have observed 4 striking local properties of neural loss landscapes on classification tasks: (1) the landscape exhibits exactly $C$ directions of high positive curvature, where $C$ is the number of classes; (2) gradient directions are largely confined to this extremely low dimensional subspace of positive Hessian curvature, leaving the vast majority of directions in weight space unexplored; (3) gradient descent transiently explores intermediate regions of higher positive curvature before eventually finding flatter minima; (4) training can be successful even when confined to low dimensional {\it random} affine hyperplanes, as long as these hyperplanes intersect a Goldilocks zone of higher than average curvature. We develop a simple theoretical model of gradients and Hessians, justified by numerical experiments on architectures and datasets used in practice, that {\it simultaneously} accounts for all $4$ of these surprising and seemingly unrelated properties. Our unified model provides conceptual insights into the emergence of these properties and makes connections with diverse topics in neural networks, random matrix theory, and spin glasses, including the neural tangent kernel, BBP phase transitions, and Derrida's random energy model.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.