Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Policy Poisoning in Batch Reinforcement Learning and Control (1910.05821v2)

Published 13 Oct 2019 in cs.LG and stat.ML

Abstract: We study a security threat to batch reinforcement learning and control where the attacker aims to poison the learned policy. The victim is a reinforcement learner / controller which first estimates the dynamics and the rewards from a batch data set, and then solves for the optimal policy with respect to the estimates. The attacker can modify the data set slightly before learning happens, and wants to force the learner into learning a target policy chosen by the attacker. We present a unified framework for solving batch policy poisoning attacks, and instantiate the attack on two standard victims: tabular certainty equivalence learner in reinforcement learning and linear quadratic regulator in control. We show that both instantiation result in a convex optimization problem on which global optimality is guaranteed, and provide analysis on attack feasibility and attack cost. Experiments show the effectiveness of policy poisoning attacks.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.