Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Image Generation and Recognition (Emotions) (1910.05774v2)

Published 13 Oct 2019 in cs.LG, cs.CV, eess.IV, and stat.ML

Abstract: Generative Adversarial Networks (GANs) were proposed in 2014 by Goodfellow et al., and have since been extended into multiple computer vision applications. This report provides a thorough survey of recent GAN research, outlining the various architectures and applications, as well as methods for training GANs and dealing with latent space. This is followed by a discussion of potential areas for future GAN research, including: evaluating GANs, better understanding GANs, and techniques for training GANs. The second part of this report outlines the compilation of a dataset of images `in the wild' representing each of the 7 basic human emotions, and analyses experiments done when training a StarGAN on this dataset combined with the FER2013 dataset.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.