Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable-Length Source Dispersions Differ under Maximum and Average Error Criteria (1910.05724v3)

Published 13 Oct 2019 in cs.IT and math.IT

Abstract: Variable-length compression without prefix-free constraints and with side-information available at both encoder and decoder is considered. Instead of requiring the code to be error-free, we allow for it to have a non-vanishing error probability. We derive one-shot bounds on the optimal average codeword length by proposing two new information quantities; namely, the conditional and unconditional $\varepsilon$-cutoff entropies. Using these one-shot bounds, we obtain the second-order asymptotics of the problem under two different formalisms---the average and maximum probabilities of error over the realization of the side-information. While the first-order terms in the asymptotic expansions for both formalisms are identical, we find that the source dispersion under the average error formalism is, in most cases, strictly smaller than its maximum error counterpart. Applications to a certain class of guessing problems, previously studied by Kuzuoka [\emph{{IEEE} Trans.\ Inf.\ Theory}, vol.~66, no.~3, pp.~1674--1690, 2020], are also discussed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.