Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Fourier Sparsity Testing (1910.05686v1)

Published 13 Oct 2019 in cs.DS

Abstract: A function $f : \mathbb{F}_2n \to \mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\mathbb{F}_2n$, we study efficient algorithms for the problem of approximating the $\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube