Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Fourier Sparsity Testing (1910.05686v1)

Published 13 Oct 2019 in cs.DS

Abstract: A function $f : \mathbb{F}_2n \to \mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\mathbb{F}_2n$, we study efficient algorithms for the problem of approximating the $\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.