Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Interventional Experiment Design for Causal Structure Learning (1910.05651v1)

Published 12 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: It is known that from purely observational data, a causal DAG is identifiable only up to its Markov equivalence class, and for many ground truth DAGs, the direction of a large portion of the edges will be remained unidentified. The golden standard for learning the causal DAG beyond Markov equivalence is to perform a sequence of interventions in the system and use the data gathered from the interventional distributions. We consider a setup in which given a budget $k$, we design $k$ interventions non-adaptively. We cast the problem of finding the best intervention target set as an optimization problem which aims to maximize the number of edges whose directions are identified due to the performed interventions. First, we consider the case that the underlying causal structure is a tree. For this case, we propose an efficient exact algorithm for the worst-case gain setup, as well as an approximate algorithm for the average gain setup. We then show that the proposed approach for the average gain setup can be extended to the case of general causal structures. In this case, besides the design of interventions, calculating the objective function is also challenging. We propose an efficient exact calculator as well as two estimators for this task. We evaluate the proposed methods using synthetic as well as real data.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.