Papers
Topics
Authors
Recent
2000 character limit reached

Regularizing Model-Based Planning with Energy-Based Models (1910.05527v1)

Published 12 Oct 2019 in cs.LG, cs.RO, and stat.ML

Abstract: Model-based reinforcement learning could enable sample-efficient learning by quickly acquiring rich knowledge about the world and using it to improve behaviour without additional data. Learned dynamics models can be directly used for planning actions but this has been challenging because of inaccuracies in the learned models. In this paper, we focus on planning with learned dynamics models and propose to regularize it using energy estimates of state transitions in the environment. We visually demonstrate the effectiveness of the proposed method and show that off-policy training of an energy estimator can be effectively used to regularize planning with pre-trained dynamics models. Further, we demonstrate that the proposed method enables sample-efficient learning to achieve competitive performance in challenging continuous control tasks such as Half-cheetah and Ant in just a few minutes of experience.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.