Papers
Topics
Authors
Recent
2000 character limit reached

Zap Q-Learning With Nonlinear Function Approximation (1910.05405v2)

Published 11 Oct 2019 in cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Zap Q-learning is a recent class of reinforcement learning algorithms, motivated primarily as a means to accelerate convergence. Stability theory has been absent outside of two restrictive classes: the tabular setting, and optimal stopping. This paper introduces a new framework for analysis of a more general class of recursive algorithms known as stochastic approximation. Based on this general theory, it is shown that Zap Q-learning is consistent under a non-degeneracy assumption, even when the function approximation architecture is nonlinear. Zap Q-learning with neural network function approximation emerges as a special case, and is tested on examples from OpenAI Gym. Based on multiple experiments with a range of neural network sizes, it is found that the new algorithms converge quickly and are robust to choice of function approximation architecture.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.