Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Material Decomposition with a Two-step Regularization for spectral CT (1910.05259v1)

Published 11 Oct 2019 in eess.IV

Abstract: One of the advantages of spectral computed tomography (CT) is it can achieve accurate material components using the material decomposition methods. The image-based material decomposition is a common method to obtain specific material components, and it can be divided into two steps: image reconstruction and post material decomposition. To obtain accurate material maps, the image reconstruction method mainly focuses on improving image quality by incorporating regularization priors. Very recently, the regularization priors are introduced into the post material decomposition procedure in the iterative image-based methods. Since the regularization priors can be incorporated into image reconstruction and post image-domain material decomposition, the performance of regularization by combining these two cases is still an open problem. To realize this goal, the material accuracy from those steps are first analyzed and compared. Then, to further improve the accuracy of decomposition materials, a two-step regularization based method is developed by incorporating priors into image reconstruction and post material decomposition. Both numerical simulation and preclinical mouse experiments are performed to demonstrate the advantages of the two-step regularization based method in improving material accuracy.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube