Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal (1910.05254v1)

Published 11 Oct 2019 in math.CO, cs.DM, and cs.DS

Abstract: Let $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, denote the size of a minimum vertex cover, minimum feedback vertex set and minimum odd cycle transversal in a graph $G$. One can ask, when looking for these sets in a graph, how much bigger might they be if we require that they are independent; that is, what is the price of independence? If $G$ has a vertex cover, feedback vertex set or odd cycle transversal that is an independent set, then we let $ivc(G)$, $ifvs(G)$ or $ioct(G)$, respectively, denote the minimum size of such a set. Similar to a recent study on the price of connectivity (Hartinger et al. EuJC 2016), we investigate for which graphs $H$ the values of $ivc(G)$, $ifvs(G)$ and $ioct(G)$ are bounded in terms of $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, when the graph $G$ belongs to the class of $H$-free graphs. We find complete classifications for vertex cover and feedback vertex set and an almost complete classification for odd cycle transversal (subject to three non-equivalent open cases). We also investigate for which graphs $H$ the values of $ivc(G)$, $ifvs(G)$ and $ioct(G)$ are equal to $vc(G)$, $fvs(G)$ and $oct(G)$, respectively, when the graph $G$ belongs to the class of $H$-free graphs. We find a complete classification for vertex cover and almost complete classifications for feedback vertex set (subject to one open case) and odd cycle transversal (subject to three open cases).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.