Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Run-Time-Reconfigurable Multi-Precision Floating-Point Matrix Multiplier Intellectual Property Core on FPGA (1910.05100v2)

Published 11 Oct 2019 in cs.AR

Abstract: In todays world, high-power computing applications such as image processing, digital signal processing, graphics, and robotics require enormous computing power. These applications use matrix operations, especially matrix multiplication. Multiplication operations require a lot of computational time and are also complex in design. We can use field-programmable gate arrays as low-cost hardware accelerators along with a low-cost general-purpose processor instead of a high-cost application-specific processor for such applications. In this work, we employ an efficient Strassens algorithm for matrix multiplication and a highly efficient run-time-reconfigurable floating-point multiplier for matrix element multiplication. The run-time-reconfigurable floating-point multiplier is implemented with custom floating-point format for variable-precision applications. A very efficient combination of Karatsuba algorithm and Urdhva Tiryagbhyam algorithm is used to implement the binary multiplier. This design can effectively adjust the power and delay requirements according to different accuracy requirements by reconfiguring itself during run time.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube