Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise as a Resource for Learning in Knowledge Distillation (1910.05057v2)

Published 11 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: While noise is commonly considered a nuisance in computing systems, a number of studies in neuroscience have shown several benefits of noise in the nervous system from enabling the brain to carry out computations such as probabilistic inference as well as carrying additional information about the stimuli. Similarly, noise has been shown to improve the performance of deep neural networks. In this study, we further investigate the effect of adding noise in the knowledge distillation framework because of its resemblance to collaborative subnetworks in the brain regions. We empirically show that injecting constructive noise at different levels in the collaborative learning framework enables us to train the model effectively and distill desirable characteristics in the student model. In doing so, we propose three different methods that target the common challenges in deep neural networks: minimizing the performance gap between a compact model and large model (Fickle Teacher), training high performance compact adversarially robust models (Soft Randomization), and training models efficiently under label noise (Messy Collaboration). Our findings motivate further study in the role of noise as a resource for learning in a collaborative learning framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Elahe Arani (59 papers)
  2. Fahad Sarfraz (11 papers)
  3. Bahram Zonooz (54 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.