Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Noise as a Resource for Learning in Knowledge Distillation (1910.05057v2)

Published 11 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: While noise is commonly considered a nuisance in computing systems, a number of studies in neuroscience have shown several benefits of noise in the nervous system from enabling the brain to carry out computations such as probabilistic inference as well as carrying additional information about the stimuli. Similarly, noise has been shown to improve the performance of deep neural networks. In this study, we further investigate the effect of adding noise in the knowledge distillation framework because of its resemblance to collaborative subnetworks in the brain regions. We empirically show that injecting constructive noise at different levels in the collaborative learning framework enables us to train the model effectively and distill desirable characteristics in the student model. In doing so, we propose three different methods that target the common challenges in deep neural networks: minimizing the performance gap between a compact model and large model (Fickle Teacher), training high performance compact adversarially robust models (Soft Randomization), and training models efficiently under label noise (Messy Collaboration). Our findings motivate further study in the role of noise as a resource for learning in a collaborative learning framework.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube