Verification of Neural Networks: Specifying Global Robustness using Generative Models (1910.05018v1)
Abstract: The success of neural networks across most machine learning tasks and the persistence of adversarial examples have made the verification of such models an important quest. Several techniques have been successfully developed to verify robustness, and are now able to evaluate neural networks with thousands of nodes. The main weakness of this approach is in the specification: robustness is asserted on a validation set consisting of a finite set of examples, i.e. locally. We propose a notion of global robustness based on generative models, which asserts the robustness on a very large and representative set of examples. We show how this can be used for verifying neural networks. In this paper we experimentally explore the merits of this approach, and show how it can be used to construct realistic adversarial examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.