Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Road Damage Detection Based on Unsupervised Disparity Map Segmentation (1910.04988v1)

Published 11 Oct 2019 in cs.CV, cs.LG, and eess.IV

Abstract: This paper presents a novel road damage detection algorithm based on unsupervised disparity map segmentation. Firstly, a disparity map is transformed by minimizing an energy function with respect to stereo rig roll angle and road disparity projection model. Instead of solving this energy minimization problem using non-linear optimization techniques, we directly find its numerical solution. The transformed disparity map is then segmented using Otus's thresholding method, and the damaged road areas can be extracted. The proposed algorithm requires no parameters when detecting road damage. The experimental results illustrate that our proposed algorithm performs both accurately and efficiently. The pixel-level road damage detection accuracy is approximately 97.56%.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)