Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation (1910.04920v2)
Abstract: We consider stochastic second-order methods for minimizing smooth and strongly-convex functions under an interpolation condition satisfied by over-parameterized models. Under this condition, we show that the regularized subsampled Newton method (R-SSN) achieves global linear convergence with an adaptive step-size and a constant batch-size. By growing the batch size for both the subsampled gradient and Hessian, we show that R-SSN can converge at a quadratic rate in a local neighbourhood of the solution. We also show that R-SSN attains local linear convergence for the family of self-concordant functions. Furthermore, we analyze stochastic BFGS algorithms in the interpolation setting and prove their global linear convergence. We empirically evaluate stochastic L-BFGS and a "Hessian-free" implementation of R-SSN for binary classification on synthetic, linearly-separable datasets and real datasets under a kernel mapping. Our experimental results demonstrate the fast convergence of these methods, both in terms of the number of iterations and wall-clock time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.