Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Evaluating Quantum Approximate Optimization Algorithm: A Case Study (1910.04881v1)

Published 10 Oct 2019 in quant-ph and cs.DS

Abstract: Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum algorithms for the Noisy Intermediate-Scale Quantum (NISQ) era. Quantifying the performance of QAOA in the near-term regime is of utmost importance. We perform a large-scale numerical study of the approximation ratios attainable by QAOA is the low- to medium-depth regime. To find good QAOA parameters we perform 990 million 10-qubit QAOA circuit evaluations. We find that the approximation ratio increases only marginally as the depth is increased, and the gains are offset by the increasing complexity of optimizing variational parameters. We observe a high variation in approximation ratios attained by QAOA, including high variations within the same class of problem instances. We observe that the difference in approximation ratios between problem instances increases as the similarity between instances decreases. We find that optimal QAOA parameters concentrate for instances in out benchmark, confirming the previous findings for a different class of problems.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube