Papers
Topics
Authors
Recent
2000 character limit reached

Bit Efficient Quantization for Deep Neural Networks (1910.04877v1)

Published 7 Oct 2019 in cs.CV, cs.LG, and cs.PF

Abstract: Quantization for deep neural networks have afforded models for edge devices that use less on-board memory and enable efficient low-power inference. In this paper, we present a comparison of model-parameter driven quantization approaches that can achieve as low as 3-bit precision without affecting accuracy. The post-training quantization approaches are data-free, and the resulting weight values are closely tied to the dataset distribution on which the model has converged to optimality. We show quantization results for a number of state-of-art deep neural networks (DNN) using large dataset like ImageNet. To better analyze quantization results, we describe the overall range and local sparsity of values afforded through various quantization schemes. We show the methods to lower bit-precision beyond quantization limits with object class clustering.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.