Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Studying Software Engineering Patterns for Designing Machine Learning Systems (1910.04736v2)

Published 10 Oct 2019 in cs.SE and cs.LG

Abstract: Machine-learning (ML) techniques have become popular in the recent years. ML techniques rely on mathematics and on software engineering. Researchers and practitioners studying best practices for designing ML application systems and software to address the software complexity and quality of ML techniques. Such design practices are often formalized as architecture patterns and design patterns by encapsulating reusable solutions to commonly occurring problems within given contexts. However, to the best of our knowledge, there has been no work collecting, classifying, and discussing these software-engineering (SE) design patterns for ML techniques systematically. Thus, we set out to collect good/bad SE design patterns for ML techniques to provide developers with a comprehensive and ordered classification of such patterns. We report here preliminary results of a systematic-literature review (SLR) of good/bad design patterns for ML.

Citations (72)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.