Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilingual Question Answering from Formatted Text applied to Conversational Agents (1910.04659v2)

Published 10 Oct 2019 in cs.CL

Abstract: Recent advances with LLMs (e.g. BERT, XLNet, ...), have allowed surpassing human performance on complex NLP tasks such as Reading Comprehension. However, labeled datasets for training are available mostly in English which makes it difficult to acknowledge progress in other languages. Fortunately, models are now pre-trained on unlabeled data from hundreds of languages and exhibit interesting transfer abilities from one language to another. In this paper, we show that multilingual BERT is naturally capable of zero-shot transfer for an extractive Question Answering task (eQA) from English to other languages. More specifically, it outperforms the best previously known baseline for transfer to Japanese and French. Moreover, using a recently published large eQA French dataset, we are able to further show that (1) zero-shot transfer provides results really close to a direct training on the target language and (2) combination of transfer and training on target is the best option overall. We finally present a practical application: a multilingual conversational agent called Kate which answers to HR-related questions in several languages directly from the content of intranet pages.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.