Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Semi-Definite Programming Approach to Robust Adaptive MPC under State Dependent Uncertainty (1910.04378v2)

Published 10 Oct 2019 in eess.SY, cs.SY, and math.OC

Abstract: We propose an Adaptive MPC framework for uncertain linear systems to achieve robust satisfaction of state and input constraints. The uncertainty in the system is assumed additive, state dependent, and globally Lipschitz with a known Lipschitz constant. We use a non-parametric technique for online identification of the system uncertainty by approximating its graph via envelopes defined by quadratic constraints. At any given time, by solving a set of convex optimization problems, the MPC controller guarantees robust constraint satisfaction for the closed loop system for all possible values of system uncertainty modeled by the envelope. The uncertainty envelope is refined with data using Set Membership Methods. We highlight the efficacy of the proposed framework via a detailed numerical example.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.