Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rate-Distortion Optimization Guided Autoencoder for Isometric Embedding in Euclidean Latent Space (1910.04329v4)

Published 10 Oct 2019 in cs.LG and stat.ML

Abstract: To analyze high-dimensional and complex data in the real world, deep generative models, such as variational autoencoder (VAE) embed data in a low-dimensional space (latent space) and learn a probabilistic model in the latent space. However, they struggle to accurately reproduce the probability distribution function (PDF) in the input space from that in the latent space. If the embedding were isometric, this issue can be solved, because the relation of PDFs can become tractable. To achieve isometric property, we propose Rate- Distortion Optimization guided autoencoder inspired by orthonormal transform coding. We show our method has the following properties: (i) the Jacobian matrix between the input space and a Euclidean latent space forms a constantlyscaled orthonormal system and enables isometric data embedding; (ii) the relation of PDFs in both spaces can become tractable one such as proportional relation. Furthermore, our method outperforms state-of-the-art methods in unsupervised anomaly detection with four public datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.