Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Online Simultaneous Semi-Parametric Dynamics Model Learning (1910.04297v2)

Published 9 Oct 2019 in cs.RO and cs.LG

Abstract: Accurate models of robots' dynamics are critical for control, stability, motion optimization, and interaction. Semi-Parametric approaches to dynamics learning combine physics-based Parametric models with unstructured Non-Parametric regression with the hope to achieve both accuracy and generalizablity. In this paper we highlight the non-stationary problem created when attempting to adapt both Parametric and Non-Parametric components simultaneously. We present a consistency transform designed to compensate for this non-stationary effect, such that the contributions of both models can adapt simultaneously without adversely affecting the performance of the platform. Thus we are able to apply the Semi-Parametric learning approach for continuous iterative online adaptation, without relying on batch or offline updates. We validate the transform via a perfect virtual model as well as by applying the overall system on a Kuka LWR IV manipulator. We demonstrate improved tracking performance during online learning and show a clear transference of contribution between the two components with a learning bias towards the Parametric component.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.