Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Probabilistic Verification and Reachability Analysis of Neural Networks via Semidefinite Programming (1910.04249v1)

Published 9 Oct 2019 in eess.SY, cs.LG, cs.SY, and math.OC

Abstract: Quantifying the robustness of neural networks or verifying their safety properties against input uncertainties or adversarial attacks have become an important research area in learning-enabled systems. Most results concentrate around the worst-case scenario where the input of the neural network is perturbed within a norm-bounded uncertainty set. In this paper, we consider a probabilistic setting in which the uncertainty is random with known first two moments. In this context, we discuss two relevant problems: (i) probabilistic safety verification, in which the goal is to find an upper bound on the probability of violating a safety specification; and (ii) confidence ellipsoid estimation, in which given a confidence ellipsoid for the input of the neural network, our goal is to compute a confidence ellipsoid for the output. Due to the presence of nonlinear activation functions, these two problems are very difficult to solve exactly. To simplify the analysis, our main idea is to abstract the nonlinear activation functions by a combination of affine and quadratic constraints they impose on their input-output pairs. We then show that the safety of the abstracted network, which is sufficient for the safety of the original network, can be analyzed using semidefinite programming. We illustrate the performance of our approach with numerical experiments.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube