Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Res2Net model for Person re-identification (1910.04061v2)

Published 8 Oct 2019 in cs.CV

Abstract: Person re-identification has become a very popular research topic in the computer vision community owing to its numerous applications and growing importance in visual surveillance. Person re-identification remains challenging due to occlusion, illumination and significant intra-class variations across different cameras. In this paper, we propose a multi-task network base on an improved Res2Net model that simultaneously computes the identification loss and verification loss of two pedestrian images. Given a pair of pedestrian images, the system predicts the identities of the two input images and whether they belong to the same identity. In order to obtain deeper feature information of pedestrians, we propose to use the latest Res2Net model for feature extraction of each input image. Experiments on several large-scale person re-identification benchmark datasets demonstrate the accuracy of our approach. For example, rank-1 accuracies are 83.18% (+1.38) and 93.14% (+0.84) for the DukeMTMC and Market-1501 datasets, respectively. The proposed method shows encouraging improvements compared with state-of-the-art methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.