Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Variance-Reduced Decentralized Stochastic Optimization with Gradient Tracking -- Part II: GT-SVRG (1910.04057v2)

Published 8 Oct 2019 in math.OC and cs.LG

Abstract: Decentralized stochastic optimization has recently benefited from gradient tracking methods \cite{DSGT_Pu,DSGT_Xin} providing efficient solutions for large-scale empirical risk minimization problems. In Part I \cite{GT_SAGA} of this work, we develop \textbf{\texttt{GT-SAGA}} that is based on a decentralized implementation of SAGA \cite{SAGA} using gradient tracking and discuss regimes of practical interest where \textbf{\texttt{GT-SAGA}} outperforms existing decentralized approaches in terms of the total number of local gradient computations. In this paper, we describe \textbf{\texttt{GT-SVRG}} that develops a decentralized gradient tracking based implementation of SVRG \cite{SVRG}, another well-known variance-reduction technique. We show that the convergence rate of \textbf{\texttt{GT-SVRG}} matches that of \textbf{\texttt{GT-SAGA}} for smooth and strongly-convex functions and highlight different trade-offs between the two algorithms in various settings.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.