Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Energy-conserving time propagation for a geometric particle-in-cell Vlasov--Maxwell solver (1910.04000v1)

Published 9 Oct 2019 in math.NA, cs.NA, and physics.plasm-ph

Abstract: This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov--Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov--Maxwell model (see Kraus et al., J Plasma Phys 83, 2017). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on the average-vector-field discretization of the subsystems. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.