Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parity Games: Another View on Lehtinen's Algorithm (1910.03919v1)

Published 9 Oct 2019 in cs.FL

Abstract: Recently, five quasi-polynomial-time algorithms solving parity games were proposed. We elaborate on one of the algorithms, by Lehtinen (2018). Czerwi\'nski et al. (2019) observe that four of the algorithms can be expressed as constructions of separating automata (of quasi-polynomial size), that is, automata that accept all plays decisively won by one of the players, and rejecting all plays decisively won by the other player. The separating automata corresponding to three of the algorithms are deterministic, and it is clear that deterministic separating automata can be used to solve parity games. The separating automaton corresponding to the algorithm of Lehtinen is nondeterministic, though. While this particular automaton can be used to solve parity games, this is not true for every nondeterministic separating automaton. As a first (more conceptual) contribution, we specify when a nondeterministic separating automaton can be used to solve parity games. We also repeat the correctness proof of the Lehtinen's algorithm, using separating automata. In this part, we prove that her construction actually leads to a faster algorithm than originally claimed in her paper: its complexity is $n{O(\log n)}$ rather than $n{O(\log d \cdot \log n)}$ (where $n$ is the number of nodes, and $d$ the number of priorities of a considered parity game), which is similar to complexities of the other quasi-polynomial-time algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)