Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

View Confusion Feature Learning for Person Re-identification (1910.03849v1)

Published 9 Oct 2019 in cs.CV

Abstract: Person re-identification is an important task in video surveillance that aims to associate people across camera views at different locations and time. View variability is always a challenging problem seriously degrading person re-identification performance. Most of the existing methods either focus on how to learn view invariant feature or how to combine view-wise features. In this paper, we mainly focus on how to learn view-invariant features by getting rid of view specific information through a view confusion learning mechanism. Specifically, we propose an end-toend trainable framework, called View Confusion Feature Learning (VCFL), for person Re-ID across cameras. To the best of our knowledge, VCFL is originally proposed to learn view-invariant identity-wise features, and it is a kind of combination of view-generic and view-specific methods. Classifiers and feature centers are utilized to achieve view confusion. Furthermore, we extract sift-guided features by using bag-of-words model to help supervise the training of deep networks and enhance the view invariance of features. In experiments, our approach is validated on three benchmark datasets including CUHK01, CUHK03, and MARKET1501, which show the superiority of the proposed method over several state-of-the-art approaches

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.