Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FlowDyn: Towards a Dynamic Flowlet Gap Detection using Programmable Data Planes (1910.03324v1)

Published 8 Oct 2019 in cs.NI

Abstract: Data center networks offer multiple disjoint paths between Top-of-Rack (ToR) switches to connect server racks providing large bisection bandwidth. An effective load-balancing mechanism is required in order to fully utilize the available capacity of the multiple paths. While packet-based load-balancing can achieve high utilization, it suffers from reordering. Flow-based load-balancing such as equal-cost multipath routing (ECMP) spreads traffic uniformly across multiple paths leading to frequent hash collisions and suboptimal performance. Finally, flowlet based load-balancing such as CONGA or HULA splits flows into smaller units, which are sent on different paths. Most flowlet based load-balancing schemes depend on a proper static setting of the flowlet gap, which decides when new flowlets are detected. While a too small gap may lead to reordering, a too large gap results in missed load-balancing opportunities. In this paper, we propose FlowDyn, which dynamically adapts the flowlet gap to increase the efficiency of the load-balancing schemes while avoiding the reordering problem. Using programmable data planes, FlowDyn uses active probes together with telemetry information to track path latency between different ToR switches. FlowDyn calculates dynamically a suitable flowlet gap that can be used for flowlet based load-balancing mechanism. We evaluate FlowDyn extensively in simulation, showing that it achieves 3.19 times smaller flow completion time at 10% load and 1.16x at 90% load.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.