Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eyenet: Attention based Convolutional Encoder-Decoder Network for Eye Region Segmentation (1910.03274v1)

Published 8 Oct 2019 in cs.CV

Abstract: With the immersive development in the field of augmented and virtual reality, accurate and speedy eye-tracking is required. Facebook Research has organized a challenge, named OpenEDS Semantic Segmentation challenge for per-pixel segmentation of the key eye regions: the sclera, the iris, the pupil, and everything else (background). There are two constraints set for the participants viz MIOU and the computational complexity of the model. More recently, researchers have achieved quite a good result using the convolutional neural networks (CNN) in segmenting eyeregions. However, the environmental challenges involved in this task such as low resolution, blur, unusual glint and, illumination, off-angles, off-axis, use of glasses and different color of iris region hinder the accuracy of segmentation. To address the challenges in eye segmentation, the present work proposes a robust and computationally efficient attention-based convolutional encoder-decoder network for segmenting all the eye regions. Our model, named EyeNet, includes modified residual units as the backbone, two types of attention blocks and multi-scale supervision for segmenting the aforesaid four eye regions. Our proposed model achieved a total score of 0.974(EDS Evaluation metric) on test data, which demonstrates superior results compared to the baseline methods.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.