Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentiable Sparsification for Deep Neural Networks (1910.03201v6)

Published 8 Oct 2019 in cs.LG and stat.ML

Abstract: Deep neural networks have significantly alleviated the burden of feature engineering, but comparable efforts are now required to determine effective architectures for these networks. Furthermore, as network sizes have become excessively large, a substantial amount of resources is invested in reducing their sizes. These challenges can be effectively addressed through the sparsification of over-complete models. In this study, we propose a fully differentiable sparsification method for deep neural networks, which can zero out unimportant parameters by directly optimizing a regularized objective function with stochastic gradient descent. Consequently, the proposed method can learn both the sparsified structure and weights of a network in an end-to-end manner. It can be directly applied to various modern deep neural networks and requires minimal modification to the training process. To the best of our knowledge, this is the first fully differentiable sparsification method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube