Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MIM: Mutual Information Machine (1910.03175v5)

Published 8 Oct 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We introduce the Mutual Information Machine (MIM), a probabilistic auto-encoder for learning joint distributions over observations and latent variables. MIM reflects three design principles: 1) low divergence, to encourage the encoder and decoder to learn consistent factorizations of the same underlying distribution; 2) high mutual information, to encourage an informative relation between data and latent variables; and 3) low marginal entropy, or compression, which tends to encourage clustered latent representations. We show that a combination of the Jensen-Shannon divergence and the joint entropy of the encoding and decoding distributions satisfies these criteria, and admits a tractable cross-entropy bound that can be optimized directly with Monte Carlo and stochastic gradient descent. We contrast MIM learning with maximum likelihood and VAEs. Experiments show that MIM learns representations with high mutual information, consistent encoding and decoding distributions, effective latent clustering, and data log likelihood comparable to VAE, while avoiding posterior collapse.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.