Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decentralized Multi-Agent Actor-Critic with Generative Inference (1910.03058v1)

Published 7 Oct 2019 in cs.MA and cs.LG

Abstract: Recent multi-agent actor-critic methods have utilized centralized training with decentralized execution to address the non-stationarity of co-adapting agents. This training paradigm constrains learning to the centralized phase such that only pre-learned policies may be used during the decentralized phase, which performs poorly when agent communications are delayed, noisy, or disrupted. In this work, we propose a new system that can gracefully handle partially-observable information due to communication disruptions during decentralized execution. Our approach augments the multi-agent actor-critic method's centralized training phase with generative modeling so that agents may infer other agents' observations when provided with locally available context. Our method is evaluated on three tasks that require agents to combine local and remote observations communicated by other agents. We evaluate our approach by introducing both partial observability during decentralized execution, and show that decentralized training on inferred observations performs as well or better than existing actor-critic methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube