Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving Neural Machine Translation Robustness via Data Augmentation: Beyond Back Translation (1910.03009v3)

Published 7 Oct 2019 in cs.CL

Abstract: Neural Machine Translation (NMT) models have been proved strong when translating clean texts, but they are very sensitive to noise in the input. Improving NMT models robustness can be seen as a form of "domain" adaption to noise. The recently created Machine Translation on Noisy Text task corpus provides noisy-clean parallel data for a few language pairs, but this data is very limited in size and diversity. The state-of-the-art approaches are heavily dependent on large volumes of back-translated data. This paper has two main contributions: Firstly, we propose new data augmentation methods to extend limited noisy data and further improve NMT robustness to noise while keeping the models small. Secondly, we explore the effect of utilizing noise from external data in the form of speech transcripts and show that it could help robustness.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)