Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic Model Predictive Control of Autonomous Systems with Non-Gaussian Correlated Uncertainty (1910.02994v1)

Published 7 Oct 2019 in eess.SY and cs.SY

Abstract: Many systems such as autonomous vehicles and quadrotors are subject to parametric uncertainties and external disturbances. These uncertainties can lead to undesired performance degradation and safety issues. Therefore, it is important to design robust control strategies to safely regulate the dynamics of a system. This paper presents a novel framework for chance-constrained stochastic model predictive control of dynamic systems with non-Gaussian correlated probabilistic uncertainties. We develop a new stochastic Galerkin method to propagate the uncertainties using a new type of basis functions and an optimization-based quadrature rule. This formulation can easily handle non-Gaussian correlated uncertainties that are beyond the capability of generalized polynomial chaos expansions. The new stochastic Galerkin formulation enables us to convert a chance-constraint stochastic model predictive control problem into a deterministic one. We verify our approach by several stochastic control tasks, including obstacle avoidance, vehicle path following, and quadrotor reference tracking.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube