Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BUZz: BUffer Zones for defending adversarial examples in image classification (1910.02785v2)

Published 3 Oct 2019 in cs.LG, cs.CR, eess.IV, and stat.ML

Abstract: We propose a novel defense against all existing gradient based adversarial attacks on deep neural networks for image classification problems. Our defense is based on a combination of deep neural networks and simple image transformations. While straightforward in implementation, this defense yields a unique security property which we term buffer zones. We argue that our defense based on buffer zones offers significant improvements over state-of-the-art defenses. We are able to achieve this improvement even when the adversary has access to the {\em entire} original training data set and unlimited query access to the defense. We verify our claim through experimentation using Fashion-MNIST and CIFAR-10: We demonstrate $<11\%$ attack success rate -- significantly lower than what other well-known state-of-the-art defenses offer -- at only a price of a $11-18\%$ drop in clean accuracy. By using a new intuitive metric, we explain why this trade-off offers a significant improvement over prior work.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.