Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Negative Sampling in Variational Autoencoders (1910.02760v3)

Published 7 Oct 2019 in cs.LG and stat.ML

Abstract: Modern deep artificial neural networks have achieved great success in the domain of computer vision and beyond. However, their application to many real-world tasks is undermined by certain limitations, such as overconfident uncertainty estimates on out-of-distribution data or performance deterioration under data distribution shifts. Several types of deep learning models used for density estimation through probabilistic generative modeling have been shown to fail to detect out-of-distribution samples by assigning higher likelihoods to anomalous data. We investigate this failure mode in Variational Autoencoder models, which are also prone to this, and improve upon the out-of-distribution generalization performance of the model by employing an alternative training scheme utilizing negative samples. We present a fully unsupervised version: when the model is trained in an adversarial manner, the generator's own outputs can be used as negative samples. We demonstrate empirically the effectiveness of the approach in reducing the overconfident likelihood estimates of out-of-distribution inputs on image data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.